
Linking Expectations (Uncertainty) toMeasurement Er-

ror

“Signal Extraction”

Concepts:

• Establish relation between expectations (uncertainty) and fore-
cast measurement error by agents

• “General to Relative” Confusion

• “Temporary or Permanent” Confusion

Formal Analogue(s):

• Conditional Expectations Modeling (REE)

• Recursive Projections

• Law of Iterated Projections (or Expectations)

Applied Statistical Analogue:

• Error-in-Variables Regression

EITM Linkage:

• Conditional Expectations Modeling + Recursive Projections +
Law of Iterated Projections ⇐⇒ Error-in-Variables Regression
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The Following Sections are Based on Whittle (1963, 1983) Sar-
gent (1987)

The EITM formulation in this module (linking expectations with
measurement error) requires the use of recursive projections and the
law of iterated expectations. Before discussing them, first review
some basic identities and operations in linear least squares.

Linear Least Squares Regression

• Suppose we estimate y and let it be the linear function of xi:

ŷ = a0 + a1x1 + · · ·+ anxn. (1)

We choose the ai so that we can minimize the distance between
y and ŷ . That is:

minE (y − ŷ)2 .

We have:
min
ai

E [y − (a0 + a1x1 + · · ·+ anxn)]
2 ∀i (2)

To minimize the equation (2), a necessary and sufficient condi-
tion is (in the normal equation(s)):

E [y − (a0 + a1x1 + · · ·+ anxn)xi] = 0, for i = 0, 1, · · · , n, (3)

where x0 = 1. This is called the Orthogonality Principle.

• Consider:
y =

nX
i=0

aixi + ε,
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where ε is the forecast error, E (ε
P

aixi) = 0 and E (εxi) = 0, for i =

0, 1, · · · , n.

The random variable Pn
i=0 aixi, where the ai are chosen to satisfy

the least squares orthogonality condition (3), is called the pro-
jection of y on x0, x1, ..., xn.

We have: X
aixi ≡ P (y |1, x1, x2, · · · , xn ) ,

where x0 ≡ 1.

According to the Orthogonality condition, we have:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ey

Eyx1

Eyx2

...

Eyxn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Ex1 Ex2 · · · Exn

Ex1 Ex21 Ex1x2 · · ·

Ex2 Ex1x2
. . .

...
...

. . .

Exn Ex2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

...

an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

and: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

...

an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [Exixj ]

−1
[Eyxk] .

Now apply the above to the simple example:

y = a0 + a1x1 + ε.

We have: ⎡⎢⎢⎣ Ey

Eyx1

⎤⎥⎥⎦ =
⎡⎢⎢⎣ 1 Ex1

Ex1 Ex21

⎤⎥⎥⎦
⎡⎢⎢⎣ a0

a1

⎤⎥⎥⎦ ,
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where (using normal equation(s), i.e., equation (3)):

a0 = Ey − a1Ex1,

and

a1 =
E (y −Ey) (x1 −Ex1)

E (x1 −Ex1)
2

=
σx1y
σ2x1

,

where σx1y is the covariance between xi and y, and σ2x1 is the vari-
ance of x1.
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Recursive Projection

The linear least squares identities now can be used in formulating
how agents can update forecasts. These forecasts will be updated
consistent with a linear least squares rule.

• The simple univariate projection can be used (recursively) to
assemble projections on many variables, such as P (y |1, x1, x2, · · · , xn ) .

• For example when n = 2 :

y = P (y |1, x1, x2 ) + ε

will imply that:
y = a0 + a1x1 + a2x2 + ε,

where Eε = 0, Eεx1 = 0 and Eεx2 = 0.

• Now, if we omit the information from x2 to project y, we have:

P (y |1, x1 ) = a0 + a1x1 + a2P (x2 |1, x1 )

where P (x2 |1, x1 ) is a component that we use 1 and x1 to project x2

for projecting y.

Expanding:

P (y |1, x1 ) = P (a0 |1, x1 ) + a1P (x1 |1, x1 ) + a2P (x2 |1, x1 ) .

• But, why is P (a0 |1, x1 ) = a0? and P (x1 |1, x1 ) = x1?

If we are predicting a constant using 1 and x1, we are still pre-
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dicting a constant a0. Therefore:

P (a0 |1, x1 ) = a0.

If we are predicting x1 using 1 and x1, certainly, we can predict
x1, i.e., P (x1 |1, x1 ) = x1.

• Mathematically: How do we show P (a0 |1, x1 ) = a0 and P (x1 |1, x1 ) = x1?

—We have:
P (a0 |1, x1 ) = t0 + t1x1.

According to the normal equations, we can solve for t0 and
t1:

t0 = Ea0 − t1Ex1,

and
t1 =

E (a1 −Ea0) (x1 −Ex1)

E (x1 −Ex1)
2 .

Since Ea0 = a0, therefore:

t1 =
E (a1 −Ea0) (x1 −Ex1)

E (x1 −Ex1)
2

= 0.

And since t1 = 0, we have:

t0 = Ea0 = a0.

Therefore:

P (a0 |1, x1 ) = t0 + t1x1

= a0
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— For P (x1 |1, x1 ) = x1, we can perform the same operations:

P (x1 |1, x1 ) = t0 + t1x1.

Now we have:
t0 = Ex1 − t1Ex1,

and

t1 =
E (x1 −Ex1) (x1 −Ex1)

E (x1 −Ex1)
2

=
E (x1 −Ex1)

2

E (x1 −Ex1)
2

= 1.

Therefore:

t0 = Ex1 − Ex1

= 0,

and:

P (x1 |1, x1 ) = t0 + t1x1

= 0 + x1

= x1.

Therefore:
P (x1 |1, x1 ) = x1

¥
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— Finally we also have:
P (ε |1, x1 ) = 0.

By the orthogonality condition(s):

E (ε) = E (εx1) = 0.

P (ε |1, x1 ) = t0 + t1x1.

Therefore:
t0 = Eε− t1Ex1,

and

t1 =
E (ε−Eε) (x1 −Ex1)

E (x1 −Ex1)
2

=
E (εx1 − εEx1 −Eεx1 +Eεx1)

E (x1 −Ex1)
2

= 0.

We have:

t0 = Eε− t1Ex1

= Eε

= 0

Therefore:
P (ε |1, x1 ) = 0

¥
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— Now, let us expand further:

y = P (y |1, x1, x2 ) = a0 + a1x1 + a2x2 + ε, (4)

and
P (y |1, x1 ) = a0 + a1x1 + a2P (x2 |1, x1 ) . (5)

Equation (4) minus equation (5), we have:

y − P (y |1, x1 ) = a2 [x2 − P (x2 |1, x1 )] + ε, (6)

which can be simplified to:

z = a2w + ε.

— Note that x2 − P (x2 |1, x1 ) is also orthogonal to ε

– i.e., E {ε [x2 − P (x2 |1, x1 )]} = 0 or E (εw) = 0.

Therefore:

P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] = a2 [x2 − P (x2 |1, x1 )] ,

or in simplified form:

P (z|w) = a2w.

• —We can rewrite equation (6) as:

y = P (y |1, x1 ) + P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] + ε, (7)
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or alternatively:

y − P (y |1, x1 ) = a2 [x2 − P (x2 |1, x1 )] + ε.

— Therefore:

P (y |1, x1, x2 ) = P (y |1, x1 ) + P [y − p (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] ,

where P (y |1, x1, x2 ) is the bivariate projection, P (y |1, x1 ),

P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] and P (x2 |1, x1 ) are univariate projec-
tions.

Note that we see that the Bivariate projection = 3 univariate
projections.

• Note also that equation (7) is useful for purposes of describing
optimal least squares learning::

y = P (y |1, x1 ) + P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] + ε,

where y−P (y |1, x1 ) is the prediction error of y given x1 and x2−P (x2 |1, x1 )

is the prediction error of x2 given x2.

• — If at first we have data only on a variable x1, the linear least
squares estimates of y and x2 are P (y |1, x1 ) and P (x2 |1, x1 ) respec-
tively:

P (y |1, x1 ) = a0 + a1x1 + a2P (x2 |1, x1 ) ,

where a1x1 implies that we are using x1 to predict y, and P (x2 |1, x1 )

implies that we are using x1 to predict x2 for predicting y.

• If an observation x2 subsequently becomes available, our esti-
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mate of y can be improved by adding to P (y |1, x1 ), and the projec-
tion of unobserved "forecast error" y − P (y |1, x1 ) on the observed
forecast error x2 − P (x2 |1, x1 ) .

That is:

P (y |1, x1, x2 ) = P (y |1, x1 ) + P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] ,

where: P (y |1, x1 ) is the original forecast, y − P (y |1, x1 ) is the forecast
error of y , given x1, and x2−P (x2 |1, x1 ) implies that we are using the
forecast error of x2 to forecast the forecast error of y given x1.

• Therefore, in general, we have:

P (y |Ω, x) = P (y |Ω) + P {y − P (y |Ω) |x− P (x |Ω)} , (8)

— Ω is the original information.

— x is the new information.

— P (y |Ω) is the prediction of y using the original information.

— P {y − P (y |Ω) |x− P (x |Ω)} implies that instead of using the original
information to predict the new information, we do have the
new information. Therefore, we use x − P (x |Ω) which is the
difference between the new information and the "forecasted"
new information to predict the error of y, (i.e., y − P (y |Ω)).
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The Law of Iterated Projections (or Expectations)

We now can show the relation between recursive projections and
conditional expectations.

• The law states that:

P [P (y |Ω, x) |Ω ] = P (y |Ω) ,

where Ω is the original information of time t − 1, while x is the
new information at time t. Note also that this expression also
can be written as: P [P (y |Ω, x) |Ω ] = Et−1 (Etyt+1) , P (y |Ω, x) = (Etyt+1) , and
P (y |Ω) = Et−1yt+1.

• How do we think of this expression in terms of expectations?

First, we have:
Et−1 (Etyt+1) = Et−1yt+1.

Why?
Etyt+1 = P (y |Ω, x) = P (y |Ω) + a [x− P (x |Ω)] ,

where [Ω, x] is the information set at time t and [Ω] is the infor-
mation set at time t-1.

and
a =

E [y − P (y |Ω)] [x− P (x |Ω)]
E [x− P (x |Ω)]2

.

Now consider the prediction of yt+1 given the information set at
time t, and given the information set at time t-1 (which agents
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only possess):

P [P (y |Ω, x) |Ω ] = P {P (y |Ω) + a [x− P (x |Ω)] |Ω}

= P [P (y |Ω) |Ω ] + P {a [x− P (x |Ω)] |Ω} ,

but P {a [x− P (x |Ω)] |Ω} = 0. Why?

P {a [x− P (x |Ω)] |Ω}

= a [P (x|Ω)− P (P (x|Ω) |Ω)]

= a [P (x |Ω)− P (x |Ω)]

= a× 0

= 0.

Therefore, we say that (from above):

P [P (y |Ω, x) |Ω ] = P (y |Ω) ,

Or
Et−1 (Etyt+1) = Et−1yt+1.
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The Signal-Extraction Problems

The linkage between conditional expectations with recursive pro-
jections and the law of iterated expectations has a natural relation
with error-in-variables regression (measurement error). There are
many examples of this "EITM-like" linkage and they generally fall
under the umbrella of signal extraction problems.

• Example 1: Measurement Error

— Suppose an agent wants to estimate a random variable "s"
but only "sees" the variable x:

x = s+ n,

where Esn = 0, Es2, En2 <∞; Es = En = 0.

Therefore:
P (s |1, x) = a0 + a1x.

—We have:

a1 =
E (xs)

Ex2

=
E [(s+ n) s]

E (s+ n)
2

=
Es2

Es2 +En2
,

and
a0 = 0.

— Therefore:
P (s |1, x) = Es2

Es2 +En2
x.
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• Example 2: General-Relative Confusion

— Suppose a worker wants to estimate their real wage "w − p".
But only "sees" the nominal wage (i.e., "w"):

w = z + u,

and
p = z + v.

Also:
Ezu = Ezv = Euv = Eu = Ez = Ev = 0,

where z is "neutral" movement in the aggregate price level.

— Therefore:
P [(w − p) |1, w ] = a0 + a1w.

We have:
w − p = u− v,

and
w = z + u.

That means:
a0 = 0,

and

a1 =
E [(w − p)w]

E (w)2

=
E [(u− v) (z + u)]

E (z + u)
2

=
Eu2

Ez2 +Eu2
.
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Therefore:
w − p =

µ
Eu2

Ez2 +Eu2

¶
w.

— The greater Eu2/Ez2 is, the closer to 1 a1 is.

— The greater is Eu2/Ez2, the larger is the fraction of variance in
w that is due to variations in the real wage ¡Eu2¢ determining
factor u.
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• Example 3: EITM – Expectations Uncertainty and Error-in-
Variables Regression – (Lucas (1973) Supply Model)

— Consider another case that producers observe the prices of
their own goods but not the aggregate price level.

Relative price of good i:

ri = pi − p.

Therefore:

pi = p+ (pi − p)

= p+ ri.

— The producers want to estimate the real relative price, but
they do not see the general price level.:

E (ri |pi ) = a0 + a1pi.

So we have:

a0 = E (ri)− a1E (pi)

= E (pi − p)− a1E (pi)

= −a1E (pi) ,
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and

a1 =
E [ri −E (ri)] [pi − E (pi)]

E [Pi −E (pi)]
2

=
E [ri −E (ri)] [(p+ ri)− E (p+ ri)]

E [(p+ ri)−E (p+ ri)]
2

=
Er2i

Er2i +Ep2

=
vr

vr + vp
,

where vr = Er2i = the variance of the real relative price and
vp = Ep2 = the variance of the general price level.

— Therefore:
E (ri |pi ) = a0 + a1pi.

Since a0 = −a1E (p) ,

E (ri |pi ) = a1 [pi −E (p)]

=
vr

vr + vp
[pi −E (p)] .

• Now, if the labor supply is given by:

li = βE (ri |pi ) ,

we have:
li = β

vr
vr + vp

[pi −E (p)] .

On average, the aggregate production is:

y = b [p−E (p)] ,

where b = β (vr) / (vr + vp) .
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• Empirical Application: International Evidence onOutput-Inflation
Trade-offs.

y = b (p−Ep) .

It implies that (given general-relative price confusion):

y = β
vr

vr + vp
[p−E (p)] ,

where vp is the variance of the nominal shock, and p− E (p) is the
nominal shock.

— Lucas estimates the following specification:

yt = c+ γt+ τ∆xt + λyt−1, (**)

where yt is real GDP, t is time, ∆xt is the change in log nominal
GDP (it represents the nominal shock), and yt−1 is lagged real
GDP.

— Lucas estimates equation (**) separately for various coun-
tries. He then asks whether the estimated τ’s — the esti-
mates of the responsiveness of output to aggregate demand
movements — are related to the average size of the countries’
aggregate demand shocks (i.e., vp).

— He then estimates:

τ i = α+ βσ∆x,i, for country i.

According to the Lucas Supply Curve, β is expected to be
negative!

— Lucas’s theory predicts that nominal shocks have smaller
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real effects in settings (small τ) where aggregate demand is
more volatile (big σ∆x,i).

— Ball, Mankiw and Romer (1988), using data from 43 coun-
tries, estimate the following regression:

τ i= 0.388 −1.639σ∆x,i

(0.057) (0.482)

R̄2 = 0.201 s.e.e. = 0.245,

where the number in parentheses are standard errors. Thus,
there is a statistically significant and negative relationship be-
tween the variability of nominal GDP growth and the estimated
effect of a given change in aggregate demand.
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• Example 4: EITM – Expectations Uncertainty and Error-in-
Variables Regression – (Alesina and Rosenthal (1995) "Com-
petence Model")

— Consider the simple model of economic growth.

yt = γ (πt − πet ) + y + εt

— If we focus on the shock term εt we find important theo-
retical/behavioral attributes. For instance, in deciding on
whether to attribute credit or blame for economic growth
outcomes to the incumbent administration, agents have to
determine what part of economic outcomes (yt) are faced with
the following "signal extraction" problem:

εt = ηt + ξt,

where the term ηt is the shock associated with "competence"
– non-inflationary growth (i.e., πt = πet ) – that can be at-
tributed to the incumbent administration. The second term,
ξt, reflects shocks to growth that are beyond government con-
trol (and competence). Both ηt and ξt have zero mean and
have second moments σ2η, σ

2
ξ respectively.

— Competence is also thought to persist and allowing for re-
election we have the competency shock represented as an
MA(1) process:

ηt = μt + ρμt−1.

— The parameter ρ represents the strength of the persistence
and 0 < ρ ≤ 1. Note also that the variance of μt is fixed at σ2μ.
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Note also that this identity (because of the use of a lag (or
lags)) allows for retrospective judgments by agents.

— Now suppose that agents have a general sense of what the av-
erage rate of growth is (y). Agents also observe actual growth
(yt). Now from above when growth in non-inflationary (or
does not reduce real wages) then total shock (which includes
competency) can be expressed as:

εt = ηt + ξt = yt − y

—When yt > y then ηt+ξt > 0. But, agents need to know howmuch
is competence and how much is luck (signal extraction). If
growth is high then agents have reason growth will be high
in the next period (given that competence can persist):

ηt+1 = μt+1 + ρμt.

— Still, agents what is the optimal estimate of competence
when the agent only sees yt? Using recursive projection and
the law of iterated expectations we have:

E
¡
ηt+1

¢
= E

¡
μt+1

¢
+ ρE (μt|yt) = ρE (μt|yt) (9)

—With this identity, we see that voters can forecast compe-
tence using the difference between yt−y, but also the "weighted"
lag of μt, i.e., ρμt−1:

μt + εt = yt − y − ρμt−1

— The final result is we can now estimate (9) using an error-
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in-variables regression:

E
¡
ηt+1

¢
= ρ

σ2μ
σ2μ + σ2ξ

¡
yt − y − ρμt−1

¢
.
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